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Hill ciphers are an application of linear algebra to cryptology (the science of
making and breaking codes and ciphers). Below we describe what Hill ciphers
are and how they are broken. And we discuss the requisite notions and facts
about modular arithmetic, and about linear algebra when the scalars are no
longer the real numbers but instead the integers modulo some m.

Our discussion of ciphers is based in part upon passages from David Kahn’s
1967 book, The Codebreakers: The Story of Secret Writing. Kahn’s book is
a fascinating non-mathematical account of codes and ciphers in a historical
context.

All arithmetic we shall do involves only integers, that is, the positive, neg-
ative, and zero “whole numbers” . . . ,−3, −2, −1, 0, 1, 2, 3, . . . .

1 Polygraphic Ciphers

Both codes and ciphers are methods for transforming a given message—the
plaintext—into a new form that is unintelligible to anyone who does not know
the rule—the key—for doing the transformation or who, more significantly, does
not know the secret rule—the inverse key—for reversing the transformation in
order to recover the original plaintext.1 Both codes and ciphers may be used in
conjunction with methods for concealing the very existence of the message, such
as secret ink or microdots. Or, the messages transformed by codes and ciphers
may be communicated in the open, for example, transmitted over shortwave
radio or printed in a newspaper ad.

1.1 Codes

In the case of a code, the key is a table that associates to each of a specific list
of words and phrases (plus syllables to “spell” words not otherwise in the list) a
corresponding “codeword” (or “codenumber”). For example, the key for a code
used by lobbyists might include such entries as shown in Table 1.

∗Copyright c©1998 by Murray Eisenberg
1The key itself need not be kept secret! In a public-key cipher, such as the RSA system

devised in 1978 by Rivest, Shamir, and Adleman, the key can be published openly, because
recovering the inverse key from it is extremely difficult. Ordinarily only someone who has the
secret inverse key can decipher a message encrypted with such a system.
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plaintext codeword
senator rabbit
soft money applesauce
next Monday green
vote think

Table 1: A code table fragment

1.2 Substitution ciphers

In the case of a cipher, by way of contrast, the key transforms individual plain-
text letters and other characters, or fixed-length groups of several characters,
into new characters—the ciphertext. To use the key to transform plaintext into
ciphertext is to encipher that plaintext; to use the inverse key to transform
ciphertext back into plaintext is to decipher that ciphertext.

One type of cipher simply rearranges the letters of the given plaintext. The
ciphers we shall study, however, are substitutions, where letters of the plain-
text are replaced by different letters of the alphabet.

One example of a substitution cipher is a “cryptogram” such as you may
have seen in a newspaper’s puzzle section. Here is an example (the ciphertext
is arbitrarily grouped into sets of five letters):

y p q m k a y c a z l f x y z

a b c d e f g h i j k l m n o p q r s t u v w x y z
f t g s m o n a y v p d c q z r w l e x h b k i u j

Table 2: A substitution cipher

You can solve such a cryptogram, that is, discover the secret meaning, if
you know the key. For the one above, the key is given by Table 2, where below
each plaintext letter is the corresponding ciphertext letter. What is the secret
plaintext in this example?

Of course, it’s no fun or challenge to decipher a message if you know the
key. What you really want to be able to do is figure out what the key and
its inverse are—as we shall say, to crack the cipher (in technical terms, to
“cryptanlyze” it). A simple letter-for-letter substitution, such as in the example
above, may be fairly easy to crack if you have enough ciphertext. For then you
can statistically analyze the ciphertext, by looking for letters (or even letter
pairs or triples) appearing frequently or infrequently in it and then making use
of known frequencies of letters (or pairs or triples) in typical English text. For
example, one standard table of letter frequencies in English lists e t a o n i r
s h d l u as the most frequent, in that order.
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1.3 Polygraphic substitution ciphers

The basic shortcoming of such a simple letter-for-letter substitution is that
the same plaintext letters always get replaced by the same ciphertext letters
(until the key is changed, of course), and that’s what makes the statistical
analysis of letter frequencies applicable. A more challenging type to analyze is
a polygraphic cipher, where the plaintext is divided into groups of adjacent
letters of the same fixed length n, and then each such group is transformed into
a different group of n letters. If n is not too small, then such a polygraphic
substitution can render letter frequency analysis useless.

Many kinds of polygraphic ciphers have been devised. One of the more
famous ones, for example, is the Playfair cipher, invented in 1854 by Charles
Wheatstone, which uses digraphs (two letters per group). The first systematic
yet simple polygraphic ciphers using more than two letters per group are the
ones we shall study below—theHill ciphers. These were first described in 1929
by their inventor, the mathematician Lester S. Hill, in the journal The American
Mathematical Monthly. Hill ciphers constitute the first general method for suc-
cessfully applying algebra—specifically, linear algebra—to polygraphic ciphers,
and for applying it in a way that is, in fact, practical.

For a polygraphic substitution, changing just one or two plaintext letters can
completely change the corresponding ciphertext! For one Hill cipher discussed
later (where our “alphabet” includes . and ?), the two plaintexts

destroy plane and deploy planes

correspond to ciphertexts:

ppajztxvtathzeri and ghdcdkqow.?ilseh

That illustrates why Hill ciphers are so difficult to crack—unless you happen
to be so lucky as to have “captured” some pieces of plaintext along with the
corresponding pieces of ciphertext. And, fortunately, the latter situation is the
one you will be faced with in the computer work concerning Hill ciphers!

1.4 Our alphabet

In all the examples below, and in the computer work with Hill ciphers, our
alphabet consists of the 26 upper-case letters of the English alphabet followed
by the period (.), the question mark ( ?), and the blank space, in that order. In
plaintext, the period and question mark have their usual meaning, and the blank
space is employed, as usual, to separate words. So we can see it, we shall denote
the blank space below by the character(�). (In your work on the computer, use
the blank space itself, however, and not this special character!)

When enciphering or deciphering, we shall represent the 29 characters in our
alphabet in order by the nonnegative integers 0, 1, . . . , 28, as shown in Table 3.

Whenever we do not need to refer to the specific alphabet above, we shall
denote the length of the alphabet by m. Moreover, we shall often refer to any
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a b c d e f g h i j k l m n o p q r s t u v w x y z . ? �
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28

Table 3: Numerical representation of 29-letter alphabet

character in such an alphabet as a “letter” even when it is a punctuation symbol
(as in our 29-character alphabet) or some other character that is not actually a
letter in the ordinary sense.

Note that, when working with Hill ciphers on the computer, you should make
your functions as general as possible to handle various alphabets, you should be
using an arbitrary integer m > 1 (and sometimes an arbitrary prime integer m)
as the alphabet length.

There is nothing magical about numbering the letters in our alphabet in
ascending order (starting with 0). In practice, one would undoubtedly scram-
ble the numbers in some arbitrary order (known to both the sender and the
receiver of an enciphered message) so as to make cracking the cipher a little
more difficult. For simplicity’s sake, we shall stick with the numbering scheme
shown.

2 Modular Arithmetic

To understand Hill ciphers, you first have to understand “modular arithmetic”.
This section explains what that is and why Hill ciphers require it.

2.1 A Hill 2-cipher

An arbitrary Hill n-cipher has as its key a given n × n matrix whose entries are
nonnegative integers from among 0, 1, . . . , m − 1, where m is the length of the
alphabet.

Here is an example of a Hill 2-cipher for our alphabet above (where m = 29).
The key is the 2 × 2 matrix:

A =
[
2 3
4 5

]

We use A to encipher groups of 2 consecutive characters—digraphs—at a
time. Let us first encipher the digraph be. In our alphabet, the letters b and e
are numbered 1 and 4, respectively, so we represent be by the column vector

[
1
4

]
.

To encipher be, we multiply this column vector by the key matrix A:
[
2 3
4 5

] [
1
4

]
=

[
14
24

]

4



Finally, we use in reverse the correspondence between alphabet characters and
numbers to see that 14 and 24 represent the characters o and y, respectively.
Thus the ciphertext corresponding to be is oy.

Suppose, now, we wish to apply the same Hill 2-cipher instead to the plain-
text an. This is represented by the vector [0 13]T , and we find:

[
2 3
4 5

] [
0
13

]
=

[
39
65

]

Oops! What letters do 39 and 65 represent? Our 29-letter alphabet is
numbered from 0 up to only 28. What we do is simply “wrap around” the
numbers from 29 through 57 to represent the 29 letters again, then the numbers
from 58 through 86, etc., as in Table 4.

a b c d e f g h i j k l m n o p q r s t u v w x y z . ? �
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28
29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57
58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86

Table 4: Wrapping numerical representations modulo 29

Thus 39 represents the same letter as 39 − 29 = 10, namely, k; and 65
represents the same letter as 65− 2 · 29 = 7, namely, h. Finally, we get from an
the corresponding ciphertext kh.

2.2 Equivalence and residues modulo an integer

The procedure of “wrapping” used in the Hill 2-cipher above is quite general.
It is the same procedure you are accustomed to using when each midnight and
each noon you begin again to number the hours 1, 2, etc. Here is the formal
definition:

Definition 1. We are given an integer m > 1, called the modulus. Then we
say that two integers a and b congruent to one another modulo m (congruent
“mod m” for short), and we write

a ≡ b (mod m),

to mean that the difference a − b is an integral multiple of m. In other words,
a ≡ b (mod m) when a = b + k · m for some integer k (positive, negative, or
zero).

For our Hill 2-cipher above, we had

39 ≡ 10 (mod 29) and 65 ≡ 7 (mod 29)

because

39 − 10 = 1 · 29 and 65 − 7 = 2 · 29.
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Here are some more examples, when the modulus is small, namely, when
m = 6:

9 ≡ 3 (mod 6)
23 ≡ 5 (mod 6)
−8 ≡ 4 (mod 6)
12 ≡ 0 (mod 6)

Evidently a ≡ b (mod m) whenever a = b (for then a − b = 0 = 0 · m), but
not conversely. Thus the idea of “sameness” expressed by equivalence mod m
generalizes the usual idea of equality. The most basic properties of equality also
carry over to equivalence modulo m:

a ≡ a (mod m);
if a ≡ b (mod m), then b ≡ a (mod m);

if a ≡ b (mod m) and b ≡ c (mod m), then a ≡ c (mod m).

Observe that no two integers a and b differing by less than m can possibly
be congruent modulo m. In particular, no two of the integers 0, 1, . . . , m−1 are
congruent to one another modulo m.

Observe also that an arbitrary integer a can be divided by m to get a quotient
q and a remainder r, that is, a = q · m + r, with 0 ≤ r < m. (For example,
23 = 3 · 6 + 5.) In that case, of course, a ≡ r (mod m). (In the example just
given, 23 ≡ 5 (mod 6).)

From the preceding two observations it now follows that each integer is
congruent modulo m to exactly one of the integers 0, 1, . . . , m − 1. This justifies
the following definition:

Definition 2. Let m be a integer with m > 1. For an arbitrary integer a, the
residue of a modulo m is the unique integer r among 0, 1, . . . , m−1 to which
a is congruent modulo m.

For example, 5 is the residue of 23 modulo 6. And 5 is also the residue of
−7 modulo 6.

To indicate that we replace a given integer by its residue modulo m, we
sometimes say that we reduce the integer modulo m.

2.3 Modular arithmetic

For our purposes, what is most important is that equivalence modulo m preserves
sums, that is, adding one pair of integers that are congruent modulo m to a
second pair of integers gives a sum of the first pair that is congruent to the sum
of the second pair:

if a ≡ c (mod m) and b ≡ d (mod m), then a + b ≡ c + d (mod m)

For example, from 23 ≡ 5 (mod 6) and −8 ≡ 4 (mod 6), we conclude 15 =
23 + (−8) ≡ 5 + 4 = 9 (mod 6).
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Similarly, equivalence modulo m preserves products, that is, multiplying one
pair of integers that are congruent modulo m to a second pair of integers gives
a product of the first pair that is congruent to the product of the second pair:

if a ≡ c (mod m) and b ≡ d (mod m), then a · b ≡ c · d (mod m)

For example, from 23 ≡ 5 (mod 6) and −8 ≡ 4 (mod 6), we conclude −184 =
23 · (−8) ≡ 5 · 4 = 20 (mod 6).

Because equivalence modulo m preservers both sums and products, we can
now do arithmetic modulo m as follows: after adding or multiplying two
integers, replace their sum or product, respectively, by its residue modulo m. If
we do any combination of additions and multiplications of a number of integers,
and then replace the final answer by its residue modulo m, we will get the same
result as replacing the original integers by their residues modulo m (if they are
not already between 0 and m − 1) and then replacing each sum and product
along the way by its residue modulo m.

For example, let us work with modulus m = 29 again. Then we can compute
the residue of 4 · 14 + 5 · 17 either by doing all the arithmetic in the usual way
and then taking the residue—

4 · 14 + 5 · 17 = 56 + 85 = 141 ≡ 25 (mod 29)

—or instead by taking the residues at every step along the way:

4 · 14 + 5 · 17 = 56 + 85 ≡ 27 + 27 = 54 ≡ 25 (mod 29)

Similarly, we can find 2 · 14+3 · 17 ≡ 21 (mod 29) in either of two ways (try
it!). But these are precisely the computations one needs in order to encipher
the plaintext or by means of the Hill 2-cipher with the same key matrix

A =
[
2 3
4 5

]

used in the example in Section 2.1.
The numerical representation of the digraph or for our 29-letter alphabet

is the column vector [14 17]T . Now do all arithmetic modulo 29. Either work
modulo 29 all along the way—

[
2 3
4 5

] [
14
17

]
=

[
28 + 51
56 + 85

]

≡
[
28 + 22
27 + 27

]
(mod 29)

=
[
50
54

]

≡
[
21
25

]
(mod 29)
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—or else wait until the end:[
2 3
4 5

] [
14
17

]
=

[
28 + 51
56 + 85

]

=
[

79
141

]

≡
[
21
25

]
(mod 29)

Doing the arithmetic modulo 29 above has the same effect as “wrapping” of
numbers greater than 28 back around our 29-letter alphabet, as we described
when we first introduced this Hill cipher. And that is why we use modular
arithmetic for Hill ciphers.

As in the example just worked, we may use arithmetic modulo m whenever
we are doing matrix addition and multiplication, and we can freely take residues
modulo m any step along the way without affecting the values modulo m in the
final matrix answer.

2.4 The number system Zm

Let m be a given modulus. If we add or multiply two integers from among
0, 1, . . . , m−1 and take the residue of the sum or product, respectively, then we
get another integer from among 0, 1, . . . , m − 1. Thus the set {0, 1, . . . , m − 1}
is closed under the two new operations of “addition” and “multiplication” so
defined. We use the usual symbols + and · (or just juxtaposition) to denote
these two operations on {0, 1, . . . , m − 1}.
Definition 3. The set

Zm = {0, 1, . . . , m − 1}
together with the two operations of addition and multiplication described above
is called the number system of the integers modulo m.

For example, take m = 4. Then in Z4 we have

2 + 3 = 1 and 2 · 3 = 2

because, of course,

2 + 3 = 5 ≡ 1 (mod 4) and 2 · 3 = 6 ≡ 2 (mod 4).

For such a low modulus as m = 4, we can display all possible sums and
products in Zm via an addition table and a multiplication table, as shown in
Table 5.

In general, for any modulus m, addition and multiplication modulo m have
many—but not quite all—of the familiar properties of addition and multiplica-
tion of ordinary real numbers:
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+ 0 1 2 3
0 0 1 2 3
1 1 2 3 0
2 2 3 0 1
3 3 0 1 2

· 0 1 2 3
0 0 0 0 0
1 0 1 2 3
2 0 2 0 2
3 0 3 2 1

Table 5: Addition and multiplication tables for Z4

Proposition 1. Let m be an integer with m > 1. Then in Zm:

1. For all a, b, c ∈ Zm, (a + b) + c = a + (b + c).

2. For all a, b ∈ Zm, a + b = b + a.

3. For each a ∈ Zm, a + 0 = a = 0 + a.

4. For each a ∈ Zm, there is a unique x ∈ Zm, called the additive inverse of
a, such that a + x = 0 = x + a.

5. For all a, b, c ∈ Zm, (ab)c = a(bc).

6. For all a, b ∈ Zm, ab = ba.

7. For each a ∈ Zm, 1 · a = a = a · 1.
8. (This property is intentionally omitted!)

9. For all a, b, c ∈ Zm, a(b + c) = ab + ac.

10. In Zm, 1 	= 0.

For a given a ∈ Zm, its additive inverse x ∈ Zm as given by property 4,
above, is not the negative integer −a (except in the trivial case that a = 0).
Rather, the additive inverse of a is the residue of −a modulo m. For example,
as the addition table (Table 5) for Z4 shows, the additive inverse of 3 in Z4 is
1, because 3 + 1 ≡ 0 (mod 4), and that just restates the equivalence −3 ≡ 1
(mod 4).

Among the properties listed in Proposition 1, you may have expected to see
the following one, which was omitted:

8. For each a ∈ Zm with a 	= 0, there is a unique y ∈ Zm, called the
multiplicative inverse or reciprocal of a, such that a · y = 1 = y · a.

The reason that Property 8 was omitted from Proposition 1 is that it simply
is not true in general! For example, it is not true in Z4. Look again at the
multiplication table for Z4 (see Table 5). We see that 2 does not have a reciprocal
in Z4, since 1 is not among its products with each of the elements in Z4. By way
of contrast, 3 does have a reciprocal in Z4, namely 3 itself, because in Z4 we
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have 3 · 3 = 1. Thus, some nonzero elements of Z4 have reciprocals but others
do not.2

When working with Hill ciphers, we shall need to do elementary row opera-
tions on matrices in order to put them into reduced echelon form, and we shall
need to do all the arithmetic modulo a given alphabet length m. Row reduction
will all go smoothly until we need to scale a row to make a pivot 1. Then we
shall need to “divide” each entry in the row by the pivot modulo m, that is,
multiply each entry by the reciprocal of the pivot. Unfortunately, in general,
the pivot need not have a reciprocal! This will happen, for example, if the pivot
is 2 and we are working modulo 4.

· 0 1 2 3 4
0 0 0 0 0 0
1 0 1 2 3 4
2 0 2 4 1 3
3 0 3 1 4 2
4 0 4 3 2 1

Table 6: Multiplication table for Z5

Take a look, next, at the multiplication table for Z5 (see Table 6). Except
for the row showing multiplication by 0, each row in the multiplication table in-
cludes a 1, and that means that every nonzero element of Z5 has a multiplicative
inverse. In other words, Property 8, above, does hold in Z5.

The difference between Z5 and Z4—in so far as the existence of multiplicative
inverses is concerned—is that the modulus 5 is a prime and 4 is not. Recall the
definition:

Definition 4. An integer greater than 1 is said to be prime when it cannot
be written as a product of two positive integers other than 1 and itself.

For example, 2, 3, 5, 7, 11, and 13 are primes, whereas 4, 6, 8, 9, 10, and 12
are not.)

The following definition is convenient:

Definition 5. A number system closed under two operations of addition and
multiplication is called a field when Properties 1–10 all hold in it.

The examples of Z5 and Z4 discussed above illustrate the following result:

Proposition 2. Let m be an integer with m > 1. Then Zm is a field if and
only if m is prime.

In particular, Z5 is a field whereas Z4 is not. For every prime m, the field
Zm is finite. The real number system R is an example of an infinite field. So is
the number system Q consisting of just the rational numbers.

2The general theorem relevant here is the following: a has a multiplicative inverse modulo
m if and only if a is relatively prime to m, that is, 1 is the only positive integer that divides
both a and m (in the ordinary sense of division). Proposition 2, below, follows from that.
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The number system Z29 is a field because 29 is prime. For convenience, we
list in Table 7 the reciprocals (multiplicative inverses) of the nonzero elements
of Z29.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28
1 15 10 22 6 5 25 11 13 3 8 17 9 27 2 20 12 21 26 16 18 4 24 23 7 19 14 28

Table 7: Multiplicative inverses modulo 29

You should try the very easy exercise of constructing the addition and mul-
tiplication tables for the field Z2.

2.5 Modular linear algebra

What we are doing, in effect, when working with Hill ciphers is using matrices
and vectors whose entries belong to Zm for some integer m > 1, and doing
all arithmetic modulo m. Then much of what you have learned and will learn
about linear algebra still makes sense in the context of Zm: matrix addition
and multiplication; elementary row operations; linear independence; and linear
transformations.

However, within Zm we cannot, in general, always put a matrix into a row-
equivalent reduced -echelon form, unless we are guaranteed that each nonzero
element of Zm has a multiplicative inverse, in other words, unless m is prime.

It should now be obvious why we adjoined three extra “letters” to the normal
26-letter English alphabet: the number system Z29 is a field, whereas Z26 is not.
Of course it is always possible to use as a Hill cipher’s key a matrix with entries
in Zm for an arbitrary m > 1. But unless the matrix entries are chosen especially
carefully, it will not be possible to compute a matrix inverse modulo m, in other
words, to get an inverse key for decipherment.

Hill ciphers for English ordinarily use m = 26. Such a non-prime modulus
just makes Hill ciphers technically more difficult to work with. So for simplicity’s
sake, in the computer work we are usually sticking with a prime modulus, most
often with 29.

When m is a prime such as 29, Zm is a field. For any field of scalars—
whether the reals R or Zm or something else—virtually all the familiar theory
and computations about vector spaces and their linear transformations carry
over, including virtually everything about matrices.

In the next section we shall illustrate row reduction and computation of
matrix inverses over Z29.

3 Hill Ciphers

At last we ready to look in detail at Hill ciphers and how to crack them.
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3.1 Encipherment with a Hill cipher

Suppose we are given an alphabet of length m > 1 and an integer n > 1. Then a
Hill n-cipher is given by an n-by-n matrix A with entries in Zm. That matrix
prescribes the key for the cipher.

For such a key matrix A given, Hill’s algorithm to encipher a given
plaintext is as follows:

1. Separate the plaintext from left to right into some number k of
groups (polygraphs) of n letters each. If you run out of letters
when forming the final group, repeat the last plaintext letter as
many times as needed to fill out that final group to n letters.

2. Replace each letter by the corresponding number of its position
(from 0 through m − 1) in the alphabet to get k groups of n
integers each.

3. Reshape each of the k groups of integers into an n-row column
vector and in turn multiply A by each of those k column vectors
modulo m.

4. After arranging all k of the resulting product n-row column
vectors in order into a single (k ·n)-vector (with entries in Zm),
replace each of these k · n entries with the corresponding letter
of the alphabet.
The result is the ciphertext corresponding to the original plain-
text.

Note: When you implement the preceding algorithm on the computer, it
may be more convenient to reverse steps 1 and 2, that is, first replace the letters
with numbers, and only then do the grouping (and repeating the final number
as needed to fill out the final group).

The n-row column vectors formed in step 3, above, to represent groups of
plaintext letters are called plaintext vectors, even though these vectors are
composed of numbers, not letters. Likewise, the n-row column vectors obtained
by multiplying them by A modulo m in step 3 are called ciphertext vectors;
these ciphertext vectors numerically represent groups of ciphertext letters.

Plaintext could, in principle, be any jumble of letters whatsoever from our
alphabet, whether it makes sense or not, and so could ciphertext. Then the
set of all plaintext vectors—and likewise the set of all ciphertext vectors—is
nothing other than the set we shall denote by Zn

m and that consists of all n-row
column vectors with entries in Zm. And it is reasonable to call elements of Zn

m

“vectors”, because we may add them and multiply them by scalars (that is,
by elements of Zm) to obtain again elements of Zn

m—provided, as always, that
we reduce results modulo m. In view of Proposition 1, the eight fundamental
properties of vectors in Rn also hold for Zn

m. Hence we may speak of Zn
m as a
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“linear space” or “vector space”.3

At this point we can say what a Hill n-cipher with key matrix A “really”
is: the linear transformation from Zn

m to Zn
m that has standard matrix A. Even

though the domain and codomain of this linear transformation are the same, it
is suggestive to refer to the domain as consisting of all plaintext vectors, and
the codomain as consisting of all ciphertext vectors.

In the example of a Hill 2-cipher worked out in Section 2.1, we did not have
to cope with the complication mentioned in step 1 of the preceding algorithm,
namely, a plaintext whose length is not an integral multiple of the key matrix
size n. We shall illustrate how to do that below.

In step 3 of the algorithm, instead of separately multiplying A by each of
the k column matrices, we can, of course, multiply A by the single n-by-k
matrix formed from those columns. We shall also illustrate that in the following
example.

Throughout all our examples, we shall continue to use our 29-letter alphabet,
but the key matrix size n will be fairly small. (In a “real” Hill cipher, n might
be fairly large, to make cracking the cipher harder.)

Example 1. The key matrix size here is n = 3, and the key matrix is

A =


 17 5 20

23 9 3
11 2 12


 .

Our plaintext is the 10-letter message

want�help.

(recall that we are displaying a blank space in text as an underscore).
First, we group the plaintext into polygraphs of length 3, repeating the final

letter (a period) twice to fill out the fourth group:

wan t�h elp ...

Second, we replace the letters there by the corresponding numbers (see Ta-
ble 3).

22 0 13 19 28 7 4 11 15 26 26 26
3Technically speaking, we should refer to Z

n
m as a vector space only when the set Zm of

scalars is a field, that is, when m is prime. In the general case, when the scalars need not
form a field, it is more proper to call Z

n
m a module.
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Third, we apply the key:

A


 22 19 4 26

0 28 11 26
13 7 15 26


 =


 17 5 20

23 9 3
11 2 12





 22 19 4 26

0 28 11 26
13 7 15 26




=


 634 603 423 1092

545 710 236 910
398 349 246 650




≡

 25 23 17 19

23 14 4 11
21 1 14 12


 (mod 29)

Fourth, the numbers

25 23 21 23 14 1 17 4 14 19 11 12

from the “strung-out” columns just obtained represent the letters:

z x v x o b r e o t l m

For this Hill 3-cipher, the ciphertext corresponding to the plaintext send�help.
is thus zxvxobreotlm.

Earlier, in Section 1.3, we illustrated how a polygraphic substitution such as
a Hill cipher can translate two quite similar plaintexts into completely different
ciphertexts. Here is that example again:

Example 2. This is a Hill 4-cipher. The key matrix is:

A =




8 6 9 5
6 9 5 10
5 8 4 9
10 6 11 4




For this A, the plaintexts destroy�plane and deploy�planes encipher to
ppajztxvtathzeri and ghdcdkqow.?ilseh, respectively. We leave the arith-
metic details of the encipherment as an exercise.

3.2 Deciphering ciphertext with given Hill key

For a Hill cipher, the transformation from ciphertext back to plaintext is just
the inverse of the original transformation from plaintext to ciphertext. In other
words, if a Hill cipher has key matrix A, then the inverse transforma-
tion is the Hill cipher whose key matrix is A−1.

If we already have the inverse of the key matrix A, then we can use it to
decipher any ciphertext.
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Example 3. Again, as in Section 2.1, consider the Hill 2-cipher with key matrix

A =
[
2 3
4 5

]
.

The inverse of A over our scalar field Z29 is

A−1 =
[
12 16
2 28

]
,

as we can check by the computations

A

[
12 16
2 28

]
=

[
30 116
58 204

]
≡

[
1 0
0 1

]
(mod 29).

Suppose that we have received the cipher text

oykhwbzi

that we want to decipher and that we possess the inverse key. Follow the
four-step algorithm outlined in Section 3.1, but using A−1 instead of A, and
interchanging the words “ciphertext” and “plaintext” there:

First, group the letters into digraphs (there is no need here to “pad out” the
final group, since the text’s length is a multiple of the key size):

oy kh wb zi

Second, replace the letters by the corresponding numbers:

14 24 10 7 22 1 25 8

Third, multiply column vectors by A−1:

A−1
[
14 10 22 25
24 7 1 8

]
=

[
552 232 280 428
700 216 72 274

]

≡
[
1 0 19 22
4 13 14 13

]
(mod 29)

Fourth, the columns here, when strung out into

1 4 0 13 19 14 22 13

give the numerical representation of the original plaintext. It is left as an exercise
for you to use Table 3 to complete the decipherment.

If you concocted the key matrix A to a Hill cipher (or if you did not but
captured it), then you can certainly construct the inverse key by inverting A in
the usual way through row reduction, but using always, of course, arithmetic
modulo m.
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Example 4. Suppose we know the key matrix

A =
[
2 3
4 5

]

for a Hill 2-cipher (and, as usual, our 29-letter alphabet). We want to compute
the inverse key.

To do that, we augment A with the identity matrix to its right and proceed to
apply elementary row operations. (To keep the numbers small, we take residues
modulo 29 after each row operation rather than wait until the end.) As usual,
we write ↔ for matrix equivalence under elementary row operations.4 Here
goes:

[A | I] =
[
2 3 1 0
4 5 0 1

]
(1)

↔
[
30 45 15 0
4 5 0 1

]
(2)

≡
[
1 16 15 0
4 5 0 1

]
(mod 29) (3)

↔
[
1 16 15 0
0 −59 −60 1

]
(4)

≡
[
1 16 15 0
0 28 27 1

]
(mod 29) (5)

↔
[
1 16 15 0
0 784 756 28

]
(6)

≡
[
1 16 15 0
0 1 2 28

]
(mod 29) (7)

↔
[
1 0 −17 −448
0 1 2 28

]
(8)

≡
[
1 0 12 16
0 1 2 28

]
(mod 29) (9)

Did you follow all the steps in the reduction? In step (2) we multiplied
the top row by 15, which is the reciprocal modulo 29 of the first pivot 2 (see
Table 7). And in step (6) we multiplied the bottom row by 28, which is the
reciprocal modulo 29 of the second pivot 28.

From the final reduced-echelon matrix above, we read off the inverse as usual:

A−1 =
[
12 16
2 28

]

4Note that two matrices that are congruent modulo m are, in fact, row-equivalent with
respect to the scalars Zm.
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3.3 Cracking a Hill cipher

How do you crack a Hill cipher? In other words, how do you discover the
inverse key when you do not know the key? If you have “captured” enough
plaintext along with the corresponding ciphertext, then you may be able to use
the following theorem.

Theorem 1 (Cracking Theorem). Suppose the length m of the alphabet is
a prime. Let �p1, �p2, . . . , �pn be n plaintext vectors for a Hill n-cipher having
(unknown) key matrix A, and let �c1, �c2, . . . , �cn be the corresponding ciphertext
vectors. Suppose these plaintext vectors are linearly independent over Zm. Form
the matrix

P =
[

�p1 �p2 . . . �pn

]

having the plaintext vectors as its columns, and the matrix

C =
[

�c1 �c2 . . . �cn

]

having the ciphertext vectors as its columns.
Then the same sequence of elementary row operations that reduces CT to the

identity matrix I reduces PT to the transpose (A−1)T of the inverse key matrix
A−1.

Our proof of the Cracking Theorem will involve “elementary” matrices. An
n × n matrix is said to be elementary when it can be obtained from the n × n
identity matrix In by performing a single elementary row operation on In. Here
are the facts you need to know about elementary matrices in order to follow the
proof of the Cracking Theorem:

• Performing a single elementary row operation on an arbitrary n×k matrix
M yields the same result as multiplying M on its left by the elementary
matrix E formed by performing that same elementary row operation on
In.

• Each elementary matrix is invertible, and its inverse is also an elementary
matrix.

The second of these facts holds, of course, provided that nonzero scalars
have multiplicative inverses (otherwise, scaling a row need not be a reversible
operation). In our situation, this means that Zm is a field, in other words, that
m is prime.

In view of the first of these facts, the reduced row-echelon form H of a matrix
M can be obtained in the form Ek · · ·E2E1M = H for some elementary matrices
E1, E2, . . . , Ek (these elementary matrices are just the ones corresponding to
the successive elementary row operations needed to row-reduce M to H). In
particular, for an invertible matrix M , there are elementary matrices E1, E2,
. . . , Ek for which Ek · · ·E2E1M = I.
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Proof of Cracking Theorem. First, note that CT really is row-equivalent to I,
because it is the transpose of C, and the latter is invertible because, by hypoth-
esis, its columns are independent.

Let E1, E2, . . . , Ek be, for some k, the elementary matrices corresponding to
the elementary row operations that reduce CT to I. Then

Ek · · ·E2E1C
T = I.

Now A�pj = �cj for each j = 1, 2, . . . , n, so

AP = C.

Take transposes there to get

PT AT = CT .

Multiply both sides by Ek · · ·E2E1 and group the results as shown:

(Ek · · ·E2E1P
T )AT = Ek · · ·E2E1C

T .

But the right-hand side is just I, so:

(Ek · · ·E2E1P
T )AT = I

This shows two things: First, AT is invertible, and hence A itself—which is
(AT )T—is invertible. Second, multiplication of both sides of the last-displayed
equation by (AT )−1—which equals (A−1)T—gives

Ek · · ·E2E1P
T = (A−1)T .

This means that the elementary row operations corresponding to E1, E2, . . . , Ek

do reduce PT to (A−1)T .

For this theorem to be applicable, you must know—or be able to deter-
mine—the size n of the unknown key matrix (as well as the alphabet length m).
If you do, and if you have n plaintext vectors and the corresponding ciphertext
vectors, you can proceed to apply the theorem. With the notation used there,
the procedure for cracking a Hill cipher is as follows:

Use row reduction (modulo m, of course) on the n-by-2n matrix[
CT | PT

]
.

If the reduction can be completed to put that into reduced-echelon
form, and if that form is

[I |X]

for some X, then the ciphertext vectors—which are transposes of
the rows of CT—are, in fact, linearly independent, the key matrix A
is invertible, and the right half X of the reduced-echelon form [I |X]
is (A−1)T . Then A−1 is the transpose of X.
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Here is a simple example:

Example 5. Suppose you know both the plaintext bean and the corresponding
ciphertext oykh for a Hill 2-cipher. You want to determine the inverse key, so
that you can decipher any further enciphered messages you might intercept.

Separate the letters in both plaintext and ciphertext as usual into groups of
2, get the numbers 1 4 0 13 and 14 24 10 7 corresponding to the letters of the
plaintext and ciphertext, respectively, and form them into 2-row columns. The
plaintext vectors are

�p1 =
[
1
4

]
, �p2 =

[
0
13

]
,

and the corresponding ciphertext vectors are

�c1 =
[
14
24

]
, �c2 =

[
10
7

]
.

Thus the matrices P and C of the theorem are:

P = [�p1 | �p2] =
[
1 0
4 13

]
,

C = [�c1 | �c2] =
[
14 10
24 7

]

Then

[
CT | PT

]
=

[
14 24 1 4
10 7 0 13

]
.

As in Section 3.2, row-reduce this modulo 29 to get the reduced-echelon form[
1 0 12 2
0 1 16 28

]
.

Since the left half of this is I, the right half is (A−1)T :

(A−1)T =
[
12 2
16 28

]

Hence

A−1 =
[
12 16
2 28

]
.

(This is the same inverse we found in Example 4.)

Once you have computed the inverse key A−1 for an unknown Hill key A,
then of course you can compute the original key as the inverse A = (A−1)−1 of
the inverse key. And you might very well want to do that, so you could deceive
the “enemy” by using the key yourself to create fake ciphered messages to send
to them.
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